Dislocation-Governed Plastic Deformation and Fracture Toughness of Nanotwinned Magnesium

نویسندگان

  • Lei Zhou
  • Ya-Fang Guo
چکیده

In this work, the plastic deformation mechanisms responsible for mechanical properties and fracture toughness in nanotwinned (NT) magnesium is studied by molecular dynamics (MD) simulation. The influence of twin boundary (TBs) spacing and crack position on deformation behaviors are investigated. The microstructure evolution at the crack tip are not exactly the same for the left edge crack (LEC) and the right edge crack (REC) models according to calculations of the energy release rate for dislocation nucleation at the crack tip. The LEC growth initiates in a ductile pattern and then turns into a brittle cleavage. In the REC model, the atomic decohesion occurs at the crack tip to create a new free surface which directly induces a brittle cleavage. A ductile to brittle transition is observed which mainly depends on the competition between dislocation motion and crack growth. This competition mechanism is found to be correlated with the TB spacing. The critical values are 10 nm and 13.5 nm for this transition in LEC and REC models, respectively. Essentially, the dislocation densities affected by the TB spacing play a crucial role in the ductile to brittle transition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fracture Behaviour of Polyetherimide (PEI) and Interlaminar Fracture of CF/PEI Laminates at Elevated Temperatures

(2005) Fracture behavior of polyetherimide (PEI) and interlaminar fracture of CF/PEI laminates at elevated temperatures. Abstract To investigate effects of environmental temperature on fracture behaviour of a polyetherimide (PEI) thermoplastic polymer and its carbon fibre (CF/PEI) composite, experimental and numerical studies were performed on compact tension (CT) and double cantilever beam (DC...

متن کامل

Plastic anisotropy and associated deformation mechanisms in nanotwinned metals

Anisotropic plastic deformation in columnar-grained copper in which preferentially oriented nanoscale twins are embedded is studied by experimental testing, crystal plasticity modeling and molecular dynamics simulations. The dominant deformation mechanism can be effectively switched among three dislocation modes, namely dislocation glide in between the twins, dislocation transfer across twin bo...

متن کامل

A unified mechanistic model for size-dependent deformation in nanocrystalline and nanotwinned metals

We present a unified mechanistic model to rationalize size-dependent flow stress, activation volume and strain-rate sensitivity for metals with either nanocrystalline grains or nanoscale twins. The non-uniform partial dislocation model for flow stress [Asaro and Suresh, Acta Mater, Vol. 53, pp. 3369–3382, 2005; Gu et al., Scripta Mater, Vol. 62, pp. 361–364, 2010] is generalized here to conside...

متن کامل

Experimental and Numerical Investigation on Ductile-brittle Fracture Transition in a Magnesium Alloy

Tensile test on smooth and circumferentially notched specimens, systematic observation of fracture surfaces and large deformation finite element analysis were conducted to understand the deformation and failure behavior of a magnesium alloy (AM60). The plastic deformation is considered to be dominated by twining mediated slip. The tensile properties were not sensitive to the strain rates applie...

متن کامل

Through-Focal HAADF-STEM Analysis of Dislocation Cores in a High-Entropy Alloy

High-entropy alloys (HEAs) are a new class of multi-component alloys that exhibit surprising characteristics, [1] including very large strain hardening rates, large fracture toughness at room temperature [2], and a strong temperature dependence of yield strength at or below room temperature. These properties are closely linked to nano-twinning and dislocation-mediated plasticity, yet little exp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2015